
199 

Acta Cryst. (1997). A53, 199-201 

Moir6 Fringes and/or Translation-Fault Fringes? 

MICHAEL OHLER, "'b* JIJRGEN H,~RTWIG h AND EETU PRIEUR b 

"Max Planck Arbeits gruppe ROntgenbeugung an Schichtsystemen, Hausvogteiplatz 5-7, D-10117 Berlin, Germany, 
and bEuropean Synchrotron Radiation Facility, BP 220, F-38043 Grenoble CEDEX, France. E-mail: ohler@esrf.fr 

(Received 2 March 1996; accepted 28 October /996) 

Abstract 

Interference fringes on transmission topographs of crys- 
tals with an implanted amorphous layer are, among 
others, attributed to the moir6 or the translation-fault 
effect. This discussion is reconsidered in the frame of the 
theory of a perfect bicrystal extended to a deformed one. 
It is shown that translation-fault fringes have the same 
properties as moir6 fringes and that it is not necessary 
to introduce translation-fault fringes as a new diffraction 
phenomenon. 

1. Introduction 

The investigation of X-ray interference phenomena is 
an important tool to characterize implanted layers in 
silicon crystals. Damage build up due to implantation 
has been studied by Milita & Servidori (1995). Strain 
gradient profiles in silicon implanted with high-energy 
c~ particles were evaluated by Wieteska & Wierzchowski 
(1995). Moir6 fringes observed on X-ray diffraction to- 
pographs of SIMOX samples (separation by implantation 
of oxygen) have revealed lattice mismatches of the order 
of 10 -7  between the top silicon layer and the substrate 
(Jiang, Shimura & Rozgonyi, 1990; Ohler, Prieur & 
H~._rtwig, 1996). 

Interference fringes on transmission X-ray diffraction 
topographs of crystals with an implanted layer can be 
related to different generation processes. When they 
are due to spatial variations of layer thicknesses or 
the Pendellgsung length, they are most often called 
PendellOsung fringes. Moir6 fringes are formed by the 
superposition of two crystal lattices of slightly different 
orientation or with slightly different lattice parameters. 
Translation-fault fringes, introduced by Bonse & Hart 
(1969), image the spatial variation of the displacement 
field between the two parts of a bicrystal. For other 
types of interference fringes, see for example the work 
of Wieteska & Wierzchowski (1995). 

Simon & Authier (1968) observed interference fringes 
on X-ray topographs of ion-implanted silicon and inter- 
preted them as moir6 fringes. Similar samples, inves- 
tigated by Bonse, Hart & Schwuttke (1969), lead to 
comparable results but the fringes were attributed to a 
translation fault between the silicon layer on top of a 
buried amorphous layer and the substrate. 
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The aim of the present article is to solve this obvious 
contradiction. This seems important as in recent studies 
of implanted layers some confusion is found on the 
distinction between moir6 fringes and translation-fault 
fringes. This solution may help the development of 
X-ray interferometry and crystal device characterization. 

2. X-ray diffraction by a perfect  bicrystal  

A perfect bicrystal is produced from a single-crystal 
plate with parallel surfaces by a separation of one part 
from the other. The two parts can then be translated 
relative to each other by a rigid-body translation (i), 
which results in a stacking fault. It also leads to the 
formation of a gap when the translation has a component 
perpendicular to the separation plane. The lattice of one 
crystal can further be rotated with respect to the other (ii) 
and/or the lattice parameter(s) of one of the two crystals 
can be modified (iii). 

A stacking fault that is not parallel to the crystal sur- 
face can lead to interference fringes on X-ray topographs 
(Authier, 1968; Wierzchowski & Moore, 1996). When 
the stacking-fault plane is parallel to the surface, the 
bicrystal shows translation symmetry in this direction. 
In this case, a rigid-body translation (i) between the two 
plates cannot give rise to intensity oscillations on an 
X-ray topograph. Cases (ii) and (iii) lead to different 
reciprocal-lattice vectors H and H' in the first and thc 
second part of the bicrystal. However, intensity variation 
on an X-ray topograph, necessarily related to a break 
in the translation symmetry of the sample, are only 
expected if the component of AH = H ' - H  parallel to 
the sample surface, AHll, does not vanish (Ohler, Pricur 
& H~.rtwig, 1996). 

For many implanted layers, and also for the samples 
studied by Simon & Authier (1968) and Bonse, Hart 
& Schwuttke (1969), the interface plane between the 
two crystalline parts of the bicrystal is highly parallel to 
the crystal surfaces. Therefore, interference fringes on 
X-ray topographs of such bicrystals must be attributed 
to a reciprocal-lattice-vector difference between the two 
crystal plates and thus to the moir6 effect. 

Let u(r) be the displacement of the atoms in the 
second crystal plate relative to those in the first plate. 
u(r) contains rigid-body translation, rotation and lattice- 
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parameter differences. For two perfect plates with dif- 
ferent but constant reciprocal-lattice vectors H and H', 
u(r) is a linear function in r. For the most general 
case, the Takagi equations (Takagi, 1962, 1969) have 
to be used to describe the diffraction by a deformed 
bicrystal (e.g. Wieteska & Wierzchowski, 1995). In the 
following, the X-ray diffraction by a perfect bicrystal is 
formulated in terms of the deformed crystal theory, using 
the concept of the local reciprocal lattice. With an eye on 
later generalization, the effect of the displacement field 
u(r) can then be accounted for in the following way: 

X;, = X,, exp{27riH. [r - u(r)]} 

X, exp(27ri{tt.  [r - u(ro) ] 

+ AH(r~,). (r - ro) }). 
/ 

(I) 

~H(r0)  = - g r a d [ H .  u(r)]lr=r,, is the reciprocal- 
lattice-vector difference between the two crystals at 
some arbitrary point r 0 in the second crystal. The 
I~H are the Fourier components of the dielectric 
susceptibilities of the first and second crystals. The 
term H .  u(r) + AH(r0) . r  o results in a constant phase 

! 
factor for the susceptibilities ,~H of the second crystal 
while [H + AH(ro) ] • r describes the excitation of 
new tie points and the creation of new wave fields 
in the second crystal (Polcarova, 1978, 1980). When the 
intensity distribution at the exit surface of the bicrystal is 
calculated, all waves created in the second crystal have 
to be summed. The result for a gapped bicrystal with 
different reciprocal-lattice vectors is given by Yoshimura 
(1996). These expressions can be rewritten for both the 
forward-diffracted (0) and the diffracted beam (H) as 

1,,,H = A,,,H + Bo,Hcos{27r[AH(ro)  . ( r -  r0)]}. (2) 

3. Description of  the deformed bicrystal 

Bonse, Hart & Schwuttke (1969) studied silicon layers 
on top of buried amorphous layers produced by ion 
implantation. As no fringes were observed on sym- 
metrical transmission topographs, the deformation field 
of the layer, u(r), was assumed to be parallel to the 
surface normal, u(r) I[ n. It has been shown before that 
no intensity oscillations can be expected on an X-ray 
topograph if this deformation field is constant or linear 
in r. However, a nonlinear u(r) necessarily means that 
the shot-through layer must be considered as a deformed 
crystal and must be treated in an adequate formalism. 

Under certain conditions, the theory of the X-ray 
diffraction by a perfect crystal can be extended to 
the deformed crystal on a local scale (H~xtwig, Holy, 
Kittner, Kubena & Lerche, 1988). The same is possible 
for the deformed bicrystal with a nonlinear deformation 
field u(r). Therefore, zlH(r)  must be approximately 
constant over the effective area of the crystal (Kubena 
& Holy, 1983). In this case, (2) holds on a local scale 
and Ao, n and Bo. n depend on the locally excited tie 
points. N(r, r o) must then be calculated in a cummulative 
manner: 

r 

N(r, ro) = j" AH(u)  dr '  
ro  

r 

- . / 'grad[H. u(r')] dr' 
ro  

= H .  u(r) - H .  u(r0) 

and is not ,JH(r)  • r as proposed by Simon & Authier 
(1968). Thus, the geometry of moird fringes (fringe 
direction and fringe distance) is a map of H .  u(r). 
However. for the intensity profile, the excited tie points 
in both crystal plates have to be considered. 

Ao,it and Bo, H are functions of the tie points excited 
in both crystal parts and depend also on the gap thick- 
ness. It has been shown by Yoshimura (1991) that the 
gap thickness plays an important role only when it is 
comparable to or larger than the Pendel l i isung length. 
Thus, to influence the contrast on an X-ray topograph, its 
variations must be on this scale. For the samples studied 
by Bonse, Hart & Schwuttke (1969), for example, the 
gap thickness is of the order of a fraction of a micrometre 
and thus much smaller than the PendellOsung length. 

The position vectors r and r 0 in (2) can be chosen 
to be two observation points on the exit surface of 
the crystal. The diffracted intensity then cycles through 
an oscillation between r and r o whenever the function 
N(r, r ,)  = AH(r  o) • ( r - r  0) equals an integer. These in- 
tensity oscillations, related to a reciprocal-lattice-vector 
difference between the two crystals, are called moir6 
fringes. The properties of moir6 fringes (interfringe 
distance, fringe direction, contrast) can be derived from 
(2). 

4. Translation-fault fringes and moir6 fringes 

According to Bonse & Hart (1969), the properties at- 
tributed to translation-fault fringes can be summarized 
as follows: 

(i) they are a map of H .  u(r) of the relative displace- 
ment field between two crystal plates, u(r); 

(ii) they result in the same fringe pattern for different 
diffraction vectors when the projection of the diffraction 
vector on the surface normal, H . n ,  is the same; 

(iii) they show contrast reversal for reversed beam- 
entrance and beam-exit surfaces. 

It has been shown before that (i) is a property of moir6 
fringes as long as the local application of the theory of 
the perfect bicrystal to the deformed bicrystal is valid. In 
consequence, (ii) is also expected for moird fringes when 
u(r) is parallel to the surface normal. The topographs 
presented by Bonse, Hart & Schwuttke (1969) were 
recorded under the conditions of anomalous transmission 
on a bicrystal composed of a thin and a thick crystal 
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plate. When the complete solution for the bicrystal, as 
presented by Polcarova (1978), for example, is specified 
in this special case, it is seen that moird fringes also 
show contrast reversal (iii) under these conditions (Ohler 
& H~.rtwig, 1997) and this effect cannot uniquely be 
attributed to translation-fault fringes. 

In the frame of the local application of the perfect 
bicrystal theory to the deformed bicrystal, the intensity 
at any observation point on the exit surface depends 
on the tie points selected in both crystal plates. Careful 
recalculation of the derivation by Bonse & Hart (1969) 
and comparison with the results obtained by Polcarova 
(1978) shows that the theory presented by Bonse & Hart 
(1969) holds for the special case where the difference be- 
tween the tie points excited in the first and in the second 
crystal can be neglected, namely that , I~AH • s~,n/'~,¢~.~ 
is very small (,1~ is the Pendelli4sung length, s0.H are the 
unit vectors in the forward-diffracted and the diffracted 
direction, respectively, and ";m,H are the corresponding 
direction cosines). This is exactly fulfilled when A H  is 
perpendicular to the diffraction plane. 

Finally, Bonse, Hart & Schwuttke (1969) discuss 
moird fringes on a pseudomorphic structure (,3H,! - 0) 
to demonstrate that the fringes they observed are of a 
new type and not moird fringes (Fig. 8 of their article). 
It was shown before that no fringes are expected on an 
X-ray topograph of such a bicrystal. 

z. Discuss ion  and conc lus ions  

It has been shown that under the following special con- 
ditions moir6 fringes have the properties that were ex- 
clusively attributed to translation-fault fringes by Bonse, 
Hart & Schwuttke (1969): 

(i) the displacement field between the two crystals 
is normal to the crystal surface (no fringes observed on 
symmetrical transmission topographs); 

(ii) the topograph is recorded under the conditions 
of anomalous transmission on a bicrystal composed of 
a thin layer and a thick substrate (contrast reversal for 
reversed beam-entrance and beam-exit surfaces). 

For a linear displacement field between the two parts 
of a bicrystal, both crystal plates are perfect and X-ray 
diffraction on such a structure can be described with the 
perfect-crystal theory. When the displacement field is not 
linear but grad[H • u(r)] varies on a scale larger than the 
effective area of the crystal, the same formalism can be 
used on a local scale. In cases when this approximation 
is not valid, the complete Takagi formalism has to be 
employed. 

The authors thank V. Holy, W. K. Wierzchowski, 
R. K6hler and A. Authier tbr critical discussions. The 
two referees are acknowledged for helpful and construc- 
tive suggestions. 
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